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This paper deals with the coupling of a thin elastic vibrating plate embedded in a gas.
The plate can be baffled or not, or can be part of the boundary of an enclosure. The ratio
of the gas density to the plate surface mass is assumed to be small, and thus is a small
parameter in the governing equations. The aim of this work is to show that a perturbation
method can be used to solve the vibro-acoustics problem. The perturbation method is
applied in two different ways. Starting with a boundary integral equation formulation of
the problem, the solution is expanded into a Taylor series in the small parameter. In the
second approach—which, to our opinion, is newer—the solution is expressed as a series
of the resonance modes (free oscillations regimes), and the resonance modes are calculated
by a perturbation method. Various examples are proposed.
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1. INTRODUCTION

One of the main sources of environmental pollution by noise is the radiation of sound by
vibrating structures in contact with air only. This is partly the case in buildings where noise
is transmitted through windows, walls or floors: the energy source can be either an incident
acoustic wave or a mechanical force which excites the structure directly. Flow noise inside
a plane, a car, a high speed train is another example commonly encountered: in these cases,
one of the energy sources is the pressure fluctuation induced by the flow (vortex flow or
turbulent flow) on the external boundary of the vehicle.

It is well known from experiments that the influence of a surrounding gas on the
vibrating regimes of a structure is very small at least away from the resonance frequencies.
The main difference between the in vacuo behaviour of the structure and its behaviour in
a gas occur in the close vicinity of each resonance mode: the difference between an in vacuo
resonance mode and the corresponding resonance mode of the fluid-loaded structure can
hardly be measured, but the resonance frequencies of the fluid-loaded structure are lower
than those of the in vacuo solid and an extra damping appears which is due to energy loss
by sound radiation.

So, in most situations, the influence of a gas on the vibrations of an elastic structure
can be considered as a perturbation of the in vacuo motion. The asymptotic methods
known as perturbation methods, which take advantage of the existence of a small
parameter—here, the ratio of the gas density to the solid surface mass—are very well suited
to such problems. Basically, the solution of the fluid-loaded structure response is sought
as a formal Taylor series in the small parameter, which is very often stopped at the first
order, the computation of higher order terms being generally very time consuming.
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Each term of the perturbation series is obtained by solving two uncoupled problems:
the non-homogenous in vacuo structure equations and then a non-homogenous Neumann
problem for the acoustics equation, the second members of the equations are the solutions
of the problem solved at the former step. From a practical point of view, this can be
achieved with two independent numerical codes: a program which computes the in vacuo
response of the vibrating structure, and one which solves the diffraction problem. The
coupling between both codes is straightforward.

The validity domain of such approximations is not easy to define. In a preceding
paper [1], the authors have considered the response of an infinite fluid-loaded plate to a
point force and have given the analytical expression for the first order correcting term. It
involves a coefficient proportional to the inverse of the difference between the excitation
frequency and the coincidence frequency. This implies that the light fluid approximation
cannot be valid in the neighbourhood of the coincidence frequency. For this simple
example, the exact solution is known. Thus, the validity domain of a light fluid
approximation can easily be defined. It seems quite reasonable to admit that the validity
domain of a light fluid approximation is the same for an infinite plate and for a plate with
finite dimensions. This provides an a priori estimate of the accuracy of the light fluid
approximation.

This simple example provides further important information. The space Fourier
transform of the fluid-loaded plate response to a point force is readily obtained and can
be expanded into a formal Taylor series in the small parameter, the ratio of the fluid density
to the plate surface mass. This series appears to be an asymptotic series. This implies that
its inverse Fourier transform is an asymptotic series too. Here again, it is reasonable to
admit that the perturbation series corresponding to a finite dimension plate is an
asymptotic one.

In the examples detailed here, perturbation techniques are developed for two different
methods of solution of the governing equations. In the first method, the response of
the system elastic structure/fluid is sought as a series of the resonance modes—or free
oscillation modes—of the whole system: these modes are approximated by a small
parameter asymptotic technique. In the second method, the boundary value problem is
replaced by a system of boundary integral equations which is solved by a perturbation
technique.

The first system which is looked at is a thin plate in an infinite perfectly rigid baffle.
The excitation force has a harmonic time dependence. The advantage of such a simple
configuration is that the development of the leading ideas does not require heavy analytical
calculations. Nevertheless, the basic difficulties are clearly pointed out. The comparison
between the numerical solution of the exact equations and the light fluid approximation,
which requires rather simple programming and a relatively short computation time, clearly
shows the efficiency of this type of approximation. It must be added that, despite its
simplicity, this example provides a good prediction of the insulation index of walls
commonly used in the building industry.

The second example is somewhat more complex. It concerns a one-dimensional baffled
thin plate (beam) which closes a two-dimensional cavity with perfectly rigid boundaries.
The system is excited by the wall pressure exerted by an external turbulent flow. Two
kinds of resonance modes are present: the perturbed ones of the in vacuo plate modes
and the perturbed ones of the rigidly closed cavity modes. If the plate and the cavity
have a common resonance frequency, the response of the coupled system is much
reinforced. These results are, of course, known and correspond to the intuition which one
has of the physical phenomenon; but a perturbation method provides an efficient tool
to quantify it. For a random excitation force—here, a turbulent wall pressure is
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considered—a second aspect of this vibro-acoustic phenomenon appears: the mechanical
system exerts a filtering on the excitation process and the response of the system
has high peaks at each resonance frequency which are much increased for common
plate/cavity resonance frequencies. Due to its simplicity, this example enables one to
study in detail the influence of the various parameters on which the system response
depends for a very low computation cost. Furthermore, the physical interpretation of the
results is rather easy and can be helpful to understand the behaviour of the response of
more complex, though more realistic, systems in which various sub-phenomena can rise
together.

The last example deals with the response of a room containing an elastic screen. In room
acoustics, screens are commonly used for different purposes. In a factory hall, for example,
screens are used to protect workers from the noise radiated by machines. Modern concert
halls are commonly equipped with a ceiling having a tunable shape and a movable position:
such ceilings are made of light panels. The computer programs used to predict the room
performance generally neglect the vibration of the ceiling and, thus, a discrepancy between
the predicted response of the room and the experimental one is observed. It is shown here
that a perturbation method can easily be implemented in an existing computer code to
account for the vibrations of screens.

To prove the existence of a sequence of resonance frequencies and resonance modes is
not a classical task. We can cite a paper published in 1989 [2] which deals with the
resonances of a three-dimensional elastic solid immersed in a fluid. Using the scattering
theory developed in the sixties by P. Lax and R. S. Philips, the authors establish two
results: there exists a denumerable sequence of resonance (or free oscillation) modes; they
correspond to a set of pairs of resonance frequencies with the same negative imaginary
part and real parts of opposite signs. It is reasonable to assume that this result remains
valid for the cases studied here which involve thin elastic structures possibly coupled with
a cavity.

2. ACOUSTIC RADIATION OF A THIN BAFFLED PLATE

Consider a thin elastic plate occupying the domain S of the z=0 plane. The complement
S' of S is perfectly rigid. The boundary of S is denoted 1S; it is assumed that (almost)
everywhere a normal unit vector n� , pointing to S', can be defined; a tangent unit vector
s� is chosen so that the angle it makes with n� is positive. The two half-spaces V+(zq 0)
and V−(zQ 0) contain a perfect gas, initially at rest.

The system is excited by harmonic (e−ivt) sources: S+ (resp. S−) are acoustic sources
located in V+ (resp. V−) and F is the density of a force acting on the plate. The plate
displacement u(M)= u(x, y) is positive when in the zq 0 direction. The acoustic pressure
in V+ (resp. V−) is p+(Q)= p+(x, y, z) (resp. p−(Q)= p−(x, y, z)). The pressure step across
the plate is denoted by P(M)=P(x, y), which is defined by

P(x, y)= lim
o:0

[p+(x, y, o)− p−(x, y, −o−)], oq 0.

The acoustic pressure fields p+(Q) and p−(Q) satisfy a Helmholtz equation and a
Sommerfeld condition at infinity. The plate displacement u(M) obeys a thin plate equation
in which the excitation has two terms: the external forces and the pressure step P(M). On
the plate, the fluid particle normal accelerations are equal to the plate acceleration. Along
the baffle, the pressure fields satisfy homogeneous Neumann conditions. The plate
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boundary is characterized by two local boundary conditions. Thus, the functions u(M) and
p2(Q) are the solutions of the following boundary value problem:

(D+ k2)p2(Q)=S2((Q)), Q$V2,

(DD2 − mv2)u(M)+P(M)=F(M), M$S,

Tr 1zp2(M)=v2m0u(M), M$S,

Tr 1zp2(M)=0, M$S',

lu(M)= l'u(M)=0, M$1S,

(1)Sommerfeld condition for p2

The various symbols occurring in these equations are defined as follows: k2 =v2/c2
0 , with c0

the sound speed in the fluid; m0 is the density of the fluid; Tr1zp2(M)= limo:0[1p2(x, y, z)/
1z]z= o, oq 0 or Q0; D=Eh3/12(1− n2); E is Young’s modulus of the plate material, n is
its Poisson ratio, h is the plate thickness; m is the mass of the plate per unit area; l and
l' are the boundary operators describing the boundary conditions which the plate
displacement satisfies.

In the first step, by using Green’s representation of the acoustic pressure this unknown
function is eliminated and the boundary value problem is replaced by an
integro-differential equation which governs the plate displacement. Then, the eigenmodes
and the resonance modes are defined and the representations of the solution as a series
of these modes are given. In the third step, a system of boundary integral equations for
the plate displacement is established. In the final step, perturbation methods are developed
for computing the resonance modes or for solving the system of boundary integral
equations. For both representations of the solution, the expressions for the far field
asymptotic acoustic pressure are given. The results established here are illustrated by a
numerical example.

2.1. G’     , - 

   

This is a very classical task which can be recalled without details. Let Gv (Q, Q') be the
Green’s kernel which is the solution, in V+, of the Helmholtz equation and which satisfies
the Sommerfeld condition at infinity and the homogeneous Neumann condition on the
plane z=0. Let p+

0 (Q) (resp. p−
0 (Q)) be the acoustic field which is the solution, in V+ (resp.

in V−), of the non-homogeneous Neumann problem with S+ (resp. S−) as source
distribution. The total acoustic fields are given by:

p+(Q)= p+
0 (Q)+v2m0 gS

u(M')Gv (Q, M') ds(M'), Q$V+,

p−(Q)= p−
0 (Q)−v2m0 gS

u(M')Gv (Q, M') ds(M'), Q$V−, (2)

This leads to:

P(M)=P0(M)+2v2m0 gS

u(M')Gv (M, M') ds(M'),
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with

P0(M)= p+
0 (M)− p−

0 (M). (3)

Upon using this last relation, the plate equation becomes

(DD2 − mv2)u(M)+2v2m0 gS

u(M')Gv (M, M') ds(M')=F(M)−P0(M) M$S,

lu(M)= l'u(M)=0 M$1S. (4)

This is the classical integro-differential equation which governs the displacement of a
baffled plate. One also needs to introduce the weak (energetic) form of the equation, which
will be helpful for defining the eigenmodes and the resonance modes series representation
of the solution. To this end, one can introduce the following bi-linear forms:

�u, v*�=gS

uv* ds,

a(u, v)=D gS 6DuDv*+ (1− n)$2 12u
1x 1y

12v*
1x 1y

−
12u
1x2

12v*
1y2 −

12u
1y2

12v*
1x2 %7 ds, (5)

bv (u, v)=gS gS

u(M)Gv (M, M')v*(M') ds(M) ds(M').

With v replaced by u, the quadratic form a(u, u) is the bending energy of the plate and
bv (u, u) is proportional to the energy that the plate loses by acoustic radiation. Then, the
plate displacement must satisfy the variational equation

a(u, v)− mv26�u, v�−2
m0

m
bv (u, v)7= �F−P0, v� [v. (6)

The test functions v must be differentiable up to order two, square integrable together with
their first and second order derivatives, and they have to satisfy the same boundary
conditions as u does. Due to the energy loss in the fluid, there always exists a unique
solution for any real frequency.

2.2.      - :  

   

One can now introduce the coupling parameter o=2m0/m. The eigenmodes Un and the
eigenvalues Ln of operator (6) are defined by

a(Un , v)=Ln{�Un , v�− obv (Un , v)}. (7)

Assume that there exists only one eigenmode for each eigenvalue and introduce v=U*n
in the former expression. One gets

a(Un , U*m )=Ln{�Un , U*m �− obv (Un , U*m )}.
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Use is made of the following symmetry relationships:

a(Un , U*m )= a(Um , U*n ), �Un , U*m �= �Um , U*n �, bv (Un , U*m )= bv (Um , U*n ).

The first one leads to

Ln{�Un , U*m �− obv (Un , U*m )}=Lm{�Um , U*n �− obv (Um , U*n )}.

By using the last two symmetry relationships, an orthogonality relationship between the
eigenmodes is obtained:

�Un , U*m �− obv (Un , U*m )=0 for m$ n, or a(Un , U*m )=0 for m$ n. (8)

For eigenvalues of multiple order, the modifications to be introduced are straightforward.
A quantity playing the role of a norm can be associated with relationship (8) by

a(Un , U*n )=Ln{�Un , U*n �− obv (Un , U*n )}. (9)

The left side of this equality being real (positive), it is obvious that the Ln have non-zero
imaginary parts. Furthermore, it must be remarked that the eigenvalues and the
eigenmodes depend on the angular frequency v: this reuslts from the fact that the amount
of energy lost by the plate into the fluid is frequency dependent. A similar phenomenon
occurs in room acoustics when the impedance of the walls depends on the frequency (see,
for example, reference [3]). With each eigenmode Un , a pressure step Pn and a pressure field
pn are associated:

Pn (Q)=2v2m0 gS

Un (M')Gv (Q, M') ds(M'), Q$S,

pn (Q)=v2m0 gS

Un (M')Gv (Q, M') ds(M'), Q$V2. (10)

The plate displacement is now sought as a series of the eigenmodes

u(M)= s
a

n=1

anUn (M),

which leads to the variational equation

s
a

n=1

an{a(Un , v)− mv2[�Un , v�− obv (Un , v)]}= �F−P0, v�.

By using the orthogonality relationship, it is straightforward to show that the plate
displacement is given by the series

u(M)= s
a

n=1

Ln

Ln − mv2

�F−P0, U*n �
a(Un , U*n )

Un (M). (11)

This series is defined for any real mv2 because ILn $ 0, [n. The pressure fields p−(Q) and
p+(Q) are expanded into a series of components pn (Q) as

p2(Q)= p2
0 (Q)2 s

a

n=1

Ln

Ln − mv2

�F−P0, U*n �
a(Un , U*n )

pn (Q), Q$V2. (12)
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The main problem is, of course, the determination of the eigenvalues and of the
eigenmodes. If the fluid density is small enough, they can be deduced from the in vacuo
resonance frequencies and resonance modes of the plate.

2.3.        -  :
      

The resonance frequencies of the fluid-loaded baffled plate are the frequencies vn /2p for
which free oscillations are possible. With each of them, a resonance mode wn (or a finite
number of resonance modes) is associated. These modes appear in a natural way when
transient regimes are looked at. They satisfy the following boundary value problem:

(DD2 − mv2
n )wn (M)

+2v2
nm0 gS

wn (M')Gvn (M, M') ds(M')=0, M$S,

lwn (M)= l'wn (M)=0, M$1S. (13)

They are related to the eigenvalues and eigenmodes by

wn =U(vn ), v2
n =Ln (vn )/m.

It is easily shown that if vn = ṽn −itn is a solution, then v−n =−ṽn −itn is also a solution.
The resonance modes series representation of the solution is easily deduced from the

eigenmodes one. In the first step, the impulse response of the system is calculated by taking
the inverse Fourier transform of formulas (11, 12):

ũ(M, t)=
1
2p

s
a

n=1 g
+a

−a

Ln

Ln − mv2

�F−P0, U*n �
a(Un , U*n )

Un (M) e−ivt dv,

p2(Q, t)= p̃2
0 (Q, t)2

1
2p

s
a

n=1 g
+a

−a

Ln

Ln − mv2

�F−P0, U*n �
a(Un , U*n )

pn (Q) e−ivt dv.

Because the physical phenomenon must be causal—it cannot start before the sources—it
is necessary that the resonance frequencies have a negative imaginary part (tn q 0). Thus,
the system is at rest for tQ 0 and, for tq 0, its response is

ũ(M, t)=−i s
a

n=1 6 mv2
n

L'n (vn )−2mvn

�F−P0, w*n �
a(wn , w*n )

wn (M) e−iṽn t− tn t

−
mv*2

n

L'*n (vn )−2mv*n
�F−P0, w*n �*

a(wn , w*n )*
w*n (M) e−iṽn t− tn t7, (14)

p̃2(Q, t)= p̃2
0 (Q, t)3 i s

a

n=1 6 mv2
n

L'n (vn )−2mvn

�F−P0, w*n �
a(wn , w*n )

Cn (Q) e−iṽn t− tn t

−
mv*2

n

L'*n (vn )−2mv*n
�F−P0, w*n �*

a(wn , w*n )*
C*n (Q) e−iṽn t− tn t7, (15)
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Cn (Q)= m0v
2
n gS

wn (M')Gvn (Q, M') dS(M').

It can be remarked that, if the source densities are real functions, then the plate
displacement and the sound pressure fields are described by real functions too. The
resonance modes series, which represents the time harmonic dependent response of the
system, is obtained by taking the Fourier transform of equations (14, 15):

u(M)= i s
a

n=1 6 mv2
n

L'n (vn )−2mvn

�F−P0, w*n �
a(wn , w*n )

wn (M)
i(v− ṽn )− tn

−
mv*2

n

L'*n (vn )−2mv*n
�F−P0, w*n �*

a(wn , w*n )*
w*n (M)

i(v+ ṽn )− tn7, (16)

p2(Q)= p2
0 (Q)2 i s

a

n=1 6 mv2
n

L'n (vn )−2mvn

�F−P0, w*n �
a(wn , w*n )

Cn (Q)
i(v− ṽn )− tn

−
mv*2

n

L'*n (vn )−2mv*n
�F−P0, w*n �*

a(wn , w*n )*
C*n (Q)

i(v+ ṽn )− tn7. (17)

These expressions require the knowledge not only of the resonance frequencies and the
resonance modes but also of the derivatives L'n (v) of the eigenvalues Ln (v) with respect
to the angular frequency v. Perturbation methods allows one to give analytic
approximations of these quantities.

2.4.     -  : 

 

Modal series are not, in general, the easiest way to solve boundary value problems.
Indeed, they are really efficient for simple geometries which allow one to separate the
variables. Among all the numerical methods of more or less universal use, boundary
element methods have proved to be particularly efficient as far as partial differential
equations with constant coefficients are concerned (systems composed of different
homogeneous materials). Furthermore, boundary element methods can be used to evaluate
numerically the eigenmodes and the resonance modes, and thus provide an efficient tool
of general use for the computation of modal series. Finally, the boundary integral
equations which describe the oscillations of a structure coupled to a light fluid are
amenable to perturbation methods.

An integral representation of the plate displacement is obtained through the in vacuo
infinite plate Green’s kernel which is defined by

(DD2
M − mv2)g(M, M')= dM'(M), M and M'$R2

(the notation D2
M means that the derivatives are taken with respect to the co-ordinates of

M). The uniqueness of g is ensured by adding a suitable Sommerfeld condition at infinity.
Its expression is classical and will not be recalled here.

An integral representation of the plate displacement takes the form

u(M)= g ( [F−P0](M)−2v2m00g ( gS

uGv1(M)+ g ( [s1 + s2](M) [M$S. (18)
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In this expression f ( g stands for the convolution product of the two distributions f and
g. The first two terms are given by

g ( [F−P0](M)=gS

g(M, M')[F(M')−P0(M')] ds(M'),

2v2m00g ( gS

uGv1(M)=2v2m0 gS gS

g(M, M0)Gv (M0, M')u(M') ds(M') ds(M0).

In the third term, s1 and s2 are layer sources supported by 1S and of different orders (see,
for example, reference [4] or [5]): if the Green’s representation of the displacement is
adopted, the layer source densities have a physical interpretation.

One is left with three unknown functions: the plate displacement u(M) and the densities
of the boundary sources s1 and s2. The first boundary integral equation is given by equality
(18); two others are obtained by writing u(M), as given by (18), satisfies the boundary
conditions

l6g ( [F−P0](M)−2v2m00g ( gS

uGv1(M)+ g ( [s1 + s2](M)7=0,

l'6g ( [F−P0](M)−2v2m00g ( gS

uGv1(M)+ g ( [s1 + s2](M)7=0, [M$1S.

(19)

2.5.   

If the fluid is a gas, its density m0 is generally small compared to the surface mass m of
the plate. Accounting for this property, the solution of the equations can be sought as a
formal Taylor series of the small parameter m0/m. The choice of this parameter requires
some comments.

First of all, it is useful to note that no unit appears in the equations. Thus, the
interpretation of the various parameters involved has to be given. For example, h, which
stands for the plate thickness, is in fact the ratio of the plate thickness to the unit length
which has been omitted in the equations: thus, h is a dimensionless number. The same
remark applies for every quantity involved in the problem: in particular, m0/m is the
dimensionless number which measures the ratio of the fluid density to the plate surface
mass, in a given system of units.

Let t� and l� be respectively the time unit and the length unit. It is classical to introduce
what is commonly called non-dimensional equations. To that aim, the following change of
units is used: the time unit T� =T	 ct� is the inverse of the coincidence frequency and one
has

T	 c =1/fc =(2p/c2
0 )[Eh3/12(1− n2)m]1/2.

The length unit lc =L	 cl� is the wavelength in the fluid at the coincidence frequency:

L	 c = c0T	 c =(2p/c0)[Eh3/12(1− n2)m]1/2.

It must be noticed that T	 c is a dimensionless number which represents the ratio of the new
time unit to the initial one; similarly, L	 c is a dimensionless number. The governing
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equations have exactly the same form as equations (1). Expressed in these new units, the
value of the ratio of the fluid density to the plate surface mass is

m̃0/m̃=(m0/m)(2p/c0)[Eh3/12(1− n2)m]1/2.

In a review article, Crighton [6] has pointed out that this parameter is always small for
practical situations, including water/structure interactions. It could be tempting to use a
series expansion in terms of this parameter. But, when the series so obtained is written in
the initial units, one obtains the series that will be proposed here. As a consequence, the
relative errors given by both series are identical.

Nevertheless, the use of this ‘‘intrinsic fluid loading unit system’’ can have some
advantages: in particular, the corresponding equations describe a class of physical systems
instead of a particular system. But, for the comparison between the behaviours of two
different physical systems, it is necessary to adopt the same system of units for both of
them. Up to now, no unit system has been specified in this paper: thus, unless the converse
is stated, the equations can be considered as written in a classical system of units or in
the intrinsic fluid loading unit system as well.

Perturbation techniques have been used for a long time and their efficiency has been
proved for a lot of applications. Different presentations of the method that is used in this
paper are described in classical books, among them one can cite references [7–9], in the
last of which is entitled the Rayleigh–Schrödinger Method. A perturbation solution will
be established for both approaches of the problem: the eigenmodes series and the boundary
integral equations.

This introductory paragraph is concluded by recalling that the light fluid approximation
series is not valid around the coincidence frequency: in its neighbourhood, it is certainly
possible to find another kind of expansion which can, perhaps, be matched to the light
fluid approximation series. It must be added that this paper presents only the lowest order
correcting term: indeed, in our opinion, the higher order terms (though their expressions
can easily be given) require too much computation effort to be of real practical interest.

2.5.1. Approximation of the eigenmodes of the system and the eigenmodes series
representation of the solution

Upon introducing the parameter o=2m0/m, the eigenvalues Ln and the eigenmodes Un

can be formally expanded into Taylor series in o:

Un =U0
n + oU1

n + o2U2
n +. . . , Ln =L0

n + oL1
n + o2L2

n +. . . .

These expansions are introduced into equation (7) and the coefficients of the successive
powers of o are made equal to zero, which leads to a sequence of equations, the zero and
first order ones being

a(U0
n , v)=L0

n �U0
n , v�, (20)

a(U1
n , v)=L1

n �U0
n , v�−L0

nbv (U0
n , v)+L0

n �U1
n , v�. (21)

Equation (20) is for the eigenmodes (or resonance modes) of the in vacuo plate. It is
assumed that these eigenmodes and the corresponding eigenfrequencies are known
(analytically or numerically). By writing equation (21) for v=U0

n*, one gets

a(U1
n , U0*

n )= a(U0
n , U1*

n )

=L1
n �U0

n , U0*
n �−L0

nbv (U0
n , U0*

n )+L0
n �U0

n , U1*
n �.
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Equality (20) gives the value of L1
n :

L1
n =L0

n
bv (U0

n , U0*
n )

�U0
n , U0*

n �

=L0
n

gS gS

U0
n (M)Gv (M, M')U0

n (M') ds(M) ds(M')

gS

U0
n (M)2 ds(M)

. (22)

Then the first order correction U1
n of the eigenmode U0

n is expanded into a series of the
U0

q of the form

U1
n = s

a

q=1

a1
nqU0

q .

Equation (21) is written with v=U0*
m for all m and the orthogonality relationship

a(U0
n , U0*

m )= �U0
n , U0*

m �=0 for n$m between the eigenmodes is accounted for. This leads
to the equalities

a1
nm (L0

m −L0
n )�U0

n , U0*
m �=L0

nbv (U0
n , U0*

m ) [m$ n,

which uniquely determines the coefficients a1
nm for m$ n. If m= n, an undetermined form

is obtained. As suggested in reference [9], one chooses a1
nm =0: thus, the error in the

orthogonality relationship (8) is O(o2) and the difference between the norms of the functions
U0

n and U0
n + oU1

n is also O(o2). One finally gets the following result:

U1
n (M)=− s

a

q=1,q$ n

L0
n

L0
q −L0

n

bv (U0
n , U0*

q )
�U0

q , U0*
q � U0

q (M)

=− s
a

q=1,q$ n

L0
n

L0
q −L0

n

gS gS

U0
n (M)Gv (M, M')U0

q (M') ds(M) ds(M')

gS

U0
q (M)2 ds(M)

U0
q (M).

(23)

This expression involves a double integral over the plate domain S. Higher order
correcting terms will involve integrations of increasing orders: it seems that such
expressions are not interesting from a practical point of view because they rapidly require
a very large amount of computation. Our own experience has shown that it is simpler to
solve numerically the exact equations rather than to compute the second order
approximation. Nevertheless, if an algorithm well adapted to this kind of integral can be
developed, the computation of higher order approximations can be more efficient than
solving the exact equations.

The first order approximation of the eigenmodes series of the solution takes the
following form:

u(M)2 s
a

n=1

L0
n + oL1

n

L0
n + oL1

n − mv2

�F−P0, U0*
n + oU1*

n �
a(U0

n + oU1
n , U0*

n + oU1*
n )

[U0
n (M)+ oU1

n (M)], (24)
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p2(Q)2 p2
0 (Q)2 s

a

n=1

L0
n + oL1

n

L0
n + oL1

n − mv2

�F−P0, U0*
n + oU1*

n �
a(U0

n + oU1
n , U0*

n + oU1*
n )

p̂n (M), (25)

with

p̂n (M)=v2m0 gS

[U0
n (M')+ oU1

n ]Gv (M, M') ds(M'),

which is the first order approximation of pn (M) as given by equation (10).
The same method provides the approximation of the resonance frequencies and of the

resonance modes and lead to the first order approximation of the solution in terms of a
series in the resonance modes. Furthermore, the approximation of the resonance
frequencies is easily deduced from that of the eigenfrequencies; the approximation of a
resonance mode is obtained by replacing the eigenvalue Ln by mv2

n in the approximate
expression of the corresponding eigenmode.

2.5.2. Perturbation solution of the boundary integral equations
An approximate solution of equations (18, 19) can be obtained in the same way, by

stating that the unknown functions can be expanded into formal Taylor series of the
parameter o. It is immediately found that the zero order equations reduce to the in vacuo
plate boundary integral equations. These equations have a unique solution if and only if
the angular frequency is not a resonance frequency of the in vacuo plate.

If the plate material has significant damping, the in vacuo resonance frequencies of the
plate have a finite imaginary part, and, thus, the in vacuo plate equation can be solved for
any real frequency. But, if the damping is zero (or very small), due to real (or numerically
real) in vacuo resonance frequencies, the zero order equations cannot be solved for any
real frequency and the perturbation method cannot be applied in a straightforward way.
Thus, particular attention must be paid to this case.

To overcome the difficulty presented by the elastic case, an arbitrary damping is
introduced into the plate equation as follows:

(DD2 − m1v
2)u(M)+ ov2$amu(M)+gS

u(M')Gv (M, M') ds(M')]

=F(M)−P0(M) [M$S, with m1 = m(1+ oa), Ia$ 0. (26)

The choice of a is a priori arbitrary. But it is better that the zero order equation, that is
the equation obtained by neglecting the terms multiplied by o in equation (26), involves
a damping factor which is not too far from the one due to the energy radiation into the
fluid. The approximate expression for the eigenvalues suggests the following choice. Let
V(M) be the in vacuo displacement of an infinite plate exicted by a point force. The ratio

ã=
gS gS

V(M)Gv (M, M')V(M') ds(M) ds(M')

gS

V(M)2 ds(M)
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leads to the following choice for a: a= =Rã=+i=Iã=. Other functions V(M) can be adopted,
as, for example, the in vacuo plate resonance mode, the frequency of which is the closest
to the excitation frequency. One can also proceed in two steps. Using the former choice
of a, one calculates the response u0 of the corresponding damped plate and then uses this
for a new estimation of a. Our own experience has shown that this method is very efficient
and requires very few additional computations.

Let g1(M) be the elementary kernel of the damped plate operator (DD2 − m1v
2). The

solution u of equation (26) is sought in the following form:

u(M)=V1 − ov2mg1 ( 6au+gS

uGv7(M)+ g1 ( [s1 + s2](M)

with

V1 = g1 ( [F−P0](M). (27)

Then u and the boundary sources s1 and s2 are expanded into Taylor series:

u= u0 + ou1 + o2u2 + . . . ,

s1 = s0
1 + os1

1 + o2s2
1 + . . . ,

s2 = s0
2 + os1

2 + o2s2
2 + . . . .

The zero order approximation is the solution of the boundary integral equations

lg1 ( [s0
1 + s0

2 ](M)= lV1(M), l'g1 ( [s0
1 + s0

2 ](M)= l'V1(M), [M$1S, (28)

with

u0(M)− g1 ( [s0
1 + s0

2 ](M)=V1(M), [M$S.

Now let G[u] be the operator defined by

G[u](M)=gS gS

g1(M, M0)Gv (M', M0)u(M') ds(M') ds(M0).

The first order correcting terms are the solutions of the following boundary integral
equations:

lg1 ( [s1
1 + s1

2 ](M)=v2ml{ag1 ( u0(M)+G[u0](M)},

l'g1 ( [s1
1 + s1

2 ](M)=v2ml'{ag1 ( u0(M)+G[u0](M)}, [M$1S, (29)

with

u1(M)− g1 ( [s1
1 + s1

2 ](M)=−v2m{ag1 ( u0(M)+G[u0](M)}, [M$S.

These equations are easy to write explicitly for any set of boundary conditions.
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2.6.    

Let (r, u, 8) be the co-ordinates of a point Q in a spherical system, the origin of which
is on the plane z=0. It is well known that the sound pressure radiated by the plate in
the far field is related to the Fourier transform of its displacement by:

p+(Q)− p+
0 (Q)2−

eikr

2pr
û(k sin u cos 8, k sin u sin 8) for 0Q uQ p/2,

p−(Q)− p−
0 (Q)2+

eikr

2pr
û(k sin u cos 8, k sin u sin 8) for p/2Q uQ p,

û(j, h)=gS

u(x, y) e−i(xj+ yh) dx dy.

If the modal series representation of the plate displacement is used, the far field acoustic
pressure involves the Fourier transform of the in vacuo modes which are used in the
approximations. For a rectangular plate, these modes are combinations of exponential
functions, the Fourier transforms of which are known analytically. For more complex
geometries, a Fast Fourier Transform algorithm is very convenient.

The boundary integral representation of the plate displacement requires more numerical
computation. The plate displacement has the following form:

u2 g1 ( {F−P0 + s0
1 + s0

2}− ov2mg1 ( 6au0 −gs

Gvu0 + s1
1 + s1

27,
with

u0 = g1 ( {F−P0 + s0
1 + s0

2}.

The Fourier transform of the convolution products is, of course, the product of the Fourier
transforms of each term. For a two-dimensional plate, the transform of the kernel g1 is

ĝ1(j, h)=D−1[(j2 + h2)2 − m1v
2]−1.

In simple cases, the Fourier transform of F or P0 can be obtained analytically, but, in
general, it requires a numerical integration. The Fourier transforms of the boundary
sources involve integrals along the plate boundary which are, in general, evaluated
numerically. Finally, in our opinion, the Fourier transform of the last term fs Gvu0 can
be calculated numerically only.

2.7.   

The method which has been developed in this section is now illustrated by a
simple two-dimensional example. The plate is a beam of constant width 2L and infinite
length. It is excited by a line force of constant strength along its symmetry axis and
there is no acoustic source. So the plate equation reduces to a one-dimensional equation,
and the radiated pressure is governed by a two-dimensional homogeneous Helmholtz
equation.

The calculations have been conducted for the following numerical data: plate width
2L=2 m; plate thickness h=0·01 m; mass of the plate per unit area m=78 kg/m2;
Young’s modulus E=2·26 1011 Pa: Poisson’s ratio n=0·28; stiffness D=2·04×104 Nm;
fluid density m0 =1·29 kg/m3; sound speed c0 =340 m/s; this gives m/m0 =1·65×10−2 m−1.
The coincidence frequency is 1137 Hz; this gives L	 c =0·299 m and m̃/m̃0 =4·95×10−3 lc

−1.
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Figure 1. Displacement of the plate around the first in vacuo resonance mode. ——, Exact solution; – – – –,
approximation; · · · · ·, in vacuo displacement.

The first set of results, from reference [1], concerns the approximation of the modal
representation of the solution. It is well known that the air-loaded plate response is rather
similar to the in vacuo one as far as the excitation frequency, which is not too close to
the resonance frequency of the plate, is concerned. So, to prove the efficiency of the
perturbation method, the plate response has been calculated around its first, third and fifth
resonance frequencies. In Figures 1–3, the approximate solution is compared to the
numerical solution of the exact boundary integral equations.

A second set of curves concerns the application of the perturbation for solving the
boundary integral equations which govern the fluid/plate interactions. Some of them are
from reference [10]. The plate displacement is calculated for different frequencies. The zero
and first order approximations are compared to the numerical solution of the exact
equations. In a first set of curves (Figures 4–6), a value a1 of the damping coefficient a has
been estimated by using the plate displacement of an infinite in vacuo plate. For the second
set (Figures 7–9), a second value a2 has been calculated by taking the plate displacement
of a finite length plate with a damping factor equal to a1: this second estimation is more
accurate because it involves a displacement which satisfies the boundary conditions.

Figure 2. As Figure 1 but around the third in vacuo resonance mode.
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Figure 3. As Figure 1 but around the fifth in vacuo resonance mode.

The first three curves show that the perturbation method is a much more powerful
method to compute the series representation of the solution in terms of the fluid-loaded
plate resonance modes. The results suggest that the fluid-loaded plate equation can be
replaced by an in vacuo plate equation for a damped material with a slightly higher density:
the damping factor and the excess mass, which a priori both depend on the frequency, are
given by the complex resonance frequencies which are accurately evaluated by a
perturbation method. This result is, of course, not new.

The curves of Figures 4–6 show that the first order approximation obtained with a rough
estimate of the damping factor a is not very good, though it is not so bad. With a much
better estimate of this damping factor, the approximations are very good, even the zero
order ones, as shown by Figures 7–9.

Finally, it must be noted that the numerical results presented here have been obtained
for frequency domains in the close vicinity of an in vacuo plate resonance frequency, which

Figure 4. Displacement of the plate at the first in vacuo resonance mode: comparison between the numerical
solution of the exact equations and zero and first order approximations for a= a1. ——, Exact; .–.–.–, order
0; ----, order 1.
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Figure 5. As Figure 4 but at the third in vacuo resonance frequency.

is one of the most disadvantageous situations. In real life, acousticians are more interested
in global noise levels within rather large frequency bandwidths (octave or third of an
octave) which are less sensitive to errors concentrated around discrete frequencies.

3. RESPONSE OF A STRUCTURE TO THE WALL PRESSURE OF A TURBULENT FLOW:
RESONANCE MODES SERIES AND LIGHT FLUID APPROXIMATION

The aim in this section is twofold. First, we are interested in the vibro-acoustic response
of a simple structure (a baffled plate closing a cavity and immersed in a fluid) to the wall

Figure 6. As Figure 4 but at the fifth in vacuo resonance frequency.
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Figure 7. As Figure 4 but for a= a2. ——, Exact; .–.–., order 0; ––e––, order 1.

pressure that is exerted by a random process—and, more specially, a turbulent boundary
layer—which depends randomly on both the time and the space variables. The statistical
properties of the plate displacement and of the radiated pressure are easily related to those
of the excitation process as a series of the resonance modes of the system structure/fluid.
Second, when the fluid is a gas, a perturbation method enables one to express the
fluid-loaded resonance modes of the system from the in vacuo plate resonance modes on
the one hand, and from the rigidly closed cavity modes on the other. The theoretical aspect
developed here was partly presented in reference [11].

Consider the same baffled plate as in the preceding section. The domain V+ is the
half-space zq 0. The domain V− is contained in the half-space zQ 0 and bounded by S

Figure 8. As Figure 5 but for a= a2. ——, Exact; .–.–., order 0; ––e––, order 1.
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Figure 9. As Figure 6 but for a= a2. ——, Exact; –.W.–, order 0; ––e––, order 1.

and a surface s with exterior normal unit vector n� . The domains V− and V+ are filled with
a gas. The mechanical characteristics of the system are the same as in the preceding section.

The only energy source is a wall pressure exerting on the plate, with a density described
by the process f(M; t) which depends randomly on M and t. This process is assumed to
be stationary up to order two with respect to the time variable and, thus, can be
characterized by a cross-spectrum power density Sf (M, M'; v), where M and M' are two
points in the plane z=0 and v is the angular frequency.

Let ũ (M; t) denote the plate displacement, p̃+ (Q; t) the acoustic pressure radiated into
V+ and p̃− (Q; t) the acoustic pressure in the cavity V−. Each realization of these processes
satisfies the following boundary value problem:

0D−
1
c2

0

12

1t21p̃2(Q; t)=0, Q$V2,

0DD2 + m
12

1t21ũ(M; t)= f(M; t)−Trp̃+(M; t)+Trp̃−(M; t), M$S,

Tr 1zp̃2(M; t)=−m0 12ũ(M, t)/1t2, M$S,

Tr 1zp̃+(M; t)=0, M$S',

Tr 1np̃−(M; t)=0, M$s',

lũ(M; t)= l'ũ(M; t)=0, M$1S. (30)

A Neumann boundary condition has been arbitrarily adopted on s, but any other
condition can be used.

The response of the system is given by the fields of cross-spectrum densities between the
different quantities: the plate displacement and the exterior and interior acoustic pressures.
Attention will be paid to three of them only—Su (M, M'; v), Sp+(Q, Q'; v) and
Sp−(Q, Q'; v)—which seems to be of main interest. Nevertheless, other cross-spectrum
densities can easily be obtained in the same way.
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First consider the response of the system to a point harmonic unti force dM' e−ivt. The
corresponding plate displacement and pressure fields are respectively denoted by
uM'(M; v), p+

M'(Q; v) and p−
M'(Q; v). They obey the following equations:

(D+v2/c2
0 )p2

M'(Q; v)=0, Q$V2,

(DD2 − mv2)uM'(M; v)= dM' −Tr p+
M'(M; v)+Tr p−

M'(M; v), M$S,

Tr 1zp2
M'(M; v)= m0v

2uM'(M; v), M$S,

Tr 1zp+
M'(M; v)=0, M$S',

Tr 1np−
M'(M; v)=0, M$s,

luM'(M; v)= l'uM'(M; v)=0, M$1S. (31)

The uniqueness of the solution is ensured by a convenient Sommerfeld condition on
p+

M'(Q; v) (or any equivalent condition). Let Gv (Q, Q') be the Green function for the
Neumann problem in V+. Then, the exterior acoustic pressure can be expressed as an
integral of the plate displacement:

p+
M'(Q; v)= m0v

2 gS

uM'(M; v)Gv (Q, M) dS(M).

By introducing this expression into the first of equations (31), one is left with two unknown
functions uM'(M; v) and p−

M'(Q; v) only.
Using a classical proof [12], the following results can be established:

Su (M, M'; v)=gS gS

uN (M; v)Sf (N, N'; v)u*N'(M'; v) dS(N) dS(N'),

Sp+(Q, Q'; v)=gS gS

p+
N (Q; v)Sf (N, N'; v)p+

N'*(Q'; v) dS(N) dS(N'),

Sp−(Q, Q'; v)=gS gS

p−
N (Q; v)Sf (N, N'; v)p−

N'*(Q'; v) dS(N) dS(N'). (32)

The mostly used models of turbulence, like those of references [13] and [14], express the
cross-spectrum power density of the wall pressure as an inverse space Fourier transform,

Sf (M, M'; v)=gR2

S(J; v) e2ip(M−M')·J dj1 dj2,

where M (resp. M') is the vector with components the co-ordinates of M (resp. M'), and
J is the vector with components (j1, j2), dual of (x, y) in the space Fourier transform. Let
U(M, J; v) be the plate displacement due to the force e2ipM·J (J being the point with
co-ordinates j1 and j2). Then the various cross-spectrum power densities of the system
response can be expressed in terms of this displacement; one has, for example,

Su (M, M'; v)=gR2

U(M, J; v)S(J; v)U*(M, J; v) dj1 dj2.
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In the next section, the cross-spectrum power densities are expanded into a series of the
resonance modes of the system cavity/plate/external fluid. Then a second section is devoted
to the light fluid approximation of the resonance modes. A third section presents a
numerical example which illustrates the behaviour of the system.

3.1.    :      



One introduces the following bi-linear forms:

�u, v�=gS

u(M)v*(M) ds(M), Mp, cm=gV−

pc* dV,

a(u, v)=D gS 6DuDv*+ (1− n)$2 12u
1x 1y

12v*
1x 1y

−
12u
1x2

12v*
1y2 −

12u
1y2

12v*
1x2 %7 ds(M),

bv (u, v)=gS gS

u(M)Gv (M, M')v*(M') ds(M) ds(M'). (33)

The weak form of system (31) is

a(uM', v)− �Tr p−
M', v�− mv2{�uM', v�− h2bv (uM', v)}= v*(M'),

−M9p−
M', 9cm+

v2

c2
0

Mp−
M', cm+ m0v

2�uM', Trc�=0, (34)

with h2 = m0/m. In these equations, v and c are, as usual, test functions which belong to
convenient functional spaces.

3.1.1. Eigenmodes and resonance modes
The eigenmodes (Un , Pn ) of the coupled system fluid-loaded plate/cavity and the

eigenvalues Ln are defined by

a(Un , v)− �Tr Pn , v�= mLn{�Un , v�− h2bv (Un , v)},

−M9Pn , 9cm+ m0v
2�Un , Trc�=−(Ln /c2

0 )MPn , cm. (35)

This definition corresponds to that given in reference [7] (section 9.4). By using a similar
method as that of reference [1], an orthogonality relationship can be established:

MPn , P*q m/v2m0c2
0 + m[�Un , U*q �− h2bv (Un , U*q )]=0 if n$ q,

MPq , P*q m/v2m0c2
0 + m[�Uq , U*q �− h2bv (Uq , U*q )]=Nq if n= q. (36)

Obviously, Un , Pn and Ln are frequency dependent.
The resonance modes (wn , Cn ) and the corresponding resonance angular frequencies vn

are the non-trivial solutions of the following variational problem:

a(wn , v)− �Tr Cn , v�= mv2
n {�wn , v�− h2bv (wn , v)},

−M9Cn , 9cm+ m0v
2
n �wn , Trc�=−(w2

n /c2
0 )MCn , cm. (37)

It does not seem possible to establish an orthogonality relationship between the resonance
modes (at least, the authors have not been able to do so).
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3.1.2. Series representation of the response of the system to a harmonic or transient
deterministic excitation

In what follows, it is assumed that there exists a sequence of eigenmodes which is a basis
in terms of which solution can be expanded. As has been done in section 2, the solution
(uM', p−

M') of equation (31) is expanded into series of the eigenmodes, leading to the result

uM'(M; v)= s
a

n=1

an (M'; v)Un (M), p−
M'(Q; v)= s

a

n=1

an (M'; v)Pn (Q),

with

an (M')=Un (M')/(Ln −v2)Nn .

The acoustic pressure radiated into the half-space V+ is given by

p+
M'(Q)= s

a

n=1

an (M'; v)P+
n (Q),

with

p+
n (Q)= m0v

2 gS

Un (M)Gv (Q, M) dS(M). (39)

To obtain a series representation of the solution in terms of the resonance modes, that
is

uM'(M; v)= s
n

bn (M'; v)wn (M), p−
M'(Q; v)= s

n

bn (M'; v)Cn (Q),

one proceeds as in the first example by looking at the impulse response of the system. It
is expressed by an inverse Fourier transform:

ũM'(M; t)= s
a

n=1

1
2p g

+a

−a

Un (M')Un (M)
Nn (v)(Ln −v2)

e−ivt dv.

The integrals are calculated by the residues method which involves the roots of the
sequence of equations Dn (v)=Ln (v)−v2, which are the resonance angular frequencies.
It can be shown that two resonance angular frequencies are associated with each Ln (v)
and they will be denoted by vn =Vn −itn and v−n =−Vn −itn . The resonance frequencies
are assumed to have negative imaginary parts (tn q 0). It can be shown also that the
resonance mode (w−n , C−n ) is the complex conjugate of (wn , Cn ).

Let L'n (v) be the derivative of Ln (v) with respect to v. Then the displacement of the
plate due to an impulse unit point force is zero for negative times and, for tq 0, is given
by

ũM'(M; t)=−i s
a

n=1 $ wn (M')wn (M)
Nn (vn )[L'n (vn )−2vn ]

e−iVn t

−
w*n (M')w*n (M)

N*n (vn )[L'*n (vn )−2v*n ]
e+iVn t% e−tn t. (40)
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The corresponding expressions of the acoustic pressure fields are

p−
M'(Q; v)= s

a

n=1 $ wn (M')Cn (Q)
Nn (vn )[L'n (vn )−2vn ](v−vn )

−
w*n (M')C*n (Q)

N*n (vn )[L'*n (vn )−2v*n ](v+v*n )%. (41)

p+
M'(Q; v)= s

a

n=1 $ wn (M')m0v
2
n

Nn (vn )[L'n (vn )−2vn ](v−vn ) gS

wn (M)Gvn (M, Q) dS(M)

−
w*n (M')m0v*2

n

N*n (vn )[L'*n (vn )−2v*n ](v+v*n ) gS

w*n (M)G*vn (M, Q) dS(M)%.
(42)

The coefficients which occur in the expansions (40)–(42) are solutions of an infinite system
of linear algebraic equations. The most classical method of computing an approximation
to these coefficients is to solve a truncated form of the linear system that they satisfy.
Another way is to find an approximation of the derivative L'n (v) of the Ln (v) with respect
to v: it can be obtained numerically, or analytically if the assumption of light coupling
can be made.

3.1.3. Resonance modes series representation of the response of the system to a random
process

The representation is given by introducing the series (40)–(42) into expressions (32). One
first defines the following set of constants:

An =1/Nn [L'n −vn ],

x1
nm =gS gS

wn (N)Sf (N, N'; v)w*m (N') dS(N) dS(N'),

x2
nm =gS gS

wn (N)Sf (N, N'; v)wm (N') dS(N) dS(N'),

x3
nm =gS gS

w*n (N)Sf (N, N'; v)w*m (N') dS(N) dS(N'). (43)

Then the cross power spectrum density of the displacement takes the form

Su (M, M'; v)= s
a

n=1

s
a

m=1

Anwn (M)
v−vn

x1
nm

A*m w*m (M')
v−v*m

+ s
a

n=1

s
a

m=1

A*n w*n (M)
v+v*n

x1
nm

Amwm (M')
v+vm

− s
a

n=1

s
a

m=1

Anwn (M)
v−vn

x2
nm

Amwm (M')
v+vm

− s
a

n=1

s
a

m=1

A*n w*n (M)
v+v*n

x3
nm

A*m w*m (M')
v−v*m

. (44)
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Similar expressions can be established for other cross-power-density spectra, in particular
those for acoustic pressure fields.

This last representation of the response of the system is very convenient to show how
the resonance modes govern the vibro-acoustic behaviour of the system. For an angular
frequency v close to the real part Vq of the resonance angular frequency vq , the qth term
in the first series of expression (44) is much larger than the other ones and is expected to
provide a good approximation of Su (M, M'; v). As will be seen later on the numerical
curves, the various power density spectra have sharp peaks around the real part of each
resonance frequency, and vary very smoothly in between. This suggests that a good
approximation to the system response can be obtained by accurately computing its
behaviour in the vicinity of these frequencies and using a rough interpolation in between.

3.2.   

When the fluid is a gas, it has a weak influence on the vibration regime of the elastic
structure. This implies that the system cavity/plate/external fluid will have two types of
resonance modes: a first category corresponds to resonance angular frequencies close to
the in vacuo plate resonance frequencies (they are often called plate modes); the second
one corresponds to frequencies close to those of the rigidly closed cavity modes: that is,
modes which satisfy a Neumann condition along the plate surface (they are often called
cavity modes).

In general, the resonance frequencies and the resonance modes are determined by
numerically solving the exact equations; there are very few examples for which an analytical
solution is possible. It will be shown now that, for weak coupling between the solid and
the fluid, an analytical approximation for the resonance frequencies and the resonance
modes can easily be found. The coupled resonance frequencies and resonance modes are
expressed in terms of the plate and cavity resonance frequencies and resonance modes. If
the plate and cavity resonance frequencies and resonance modes are known analytically,
then one obtains a completely analytical approximation for the coupled system; if they are
known numerically only, one is left with a mixed numerical/analytical approximation.

3.2.1. Approximation of the equations governing the resonance modes of the system
cavity/plate/external fluid

As already recalled, the general bases of the perturbation method presented here are
classical and described in many text books. Among the various papers dealing with a weak
coupling between a structure and a fluid that we have read, references [15] and [16] present
results rather close to ours. The authors look for an approximation of the response of a
fluid-loaded structure to a harmonic excitation as a series of the in vacuo structure modes.
Reference [17] must also be mentioned, in which the authors use the response of a
membrane to a turbulent flow to measure the parameters involved in a turbulence model:
to get an easy method, use is made of a light fluid approximation, the validity conditions
of which are carefully presented.

Our approach is quite different from that of the above cited papers. The first step is to
define the resonance modes of the complete system and to expand its response into a series
of these modes; the second step is to develop a light fluid approximation of the resonance
frequencies and the resonance modes. They are sought as formal Taylor series in the small
parameter h=(m0/m)1/2:

wn =w0
n + hw1

n + h2w2
n +. . . . ,

Cn =C0
n + hC1

n + h2C2
n +. . . . ,

v2
n =L0

n + hL1
n + h2L2

n +. . . . . (45)
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It is clear that h2 has the dimension of the inverse of a length and that one might prefer
to use a dimensionless parameter. As already mentioned, in our opinion, it is useless to
try to find one.

The weak (energetic) form of the equations governing the resonance modes is

a(wn , v)− �Tr Cn , v�− mv2{�wn , v�− h2bv (wn , v)}=0

−M9Cn , 9cm+
v2

c2
0

MCn , cm+ m0v
2�wn , Tr c�=0. (46)

Expansions (45) are introduced into these equations and the successive powers of h are
made zero. This leads to the following sequence of equations:
zero order equations,

a(w0
n , v)− �Tr C0

n , v�− mL0
n �w0

n , v�=0,

−M9C0
n , 9cm+(L0

n /c2
0 )MC0

n , cm=0; (47)

first order equations,

a(w1
n , v)− �Tr C1

n , v�− m[L0
n �w1

n , v�+L1
n �w0

n , v�]=0,

−M9C1
n , 9cm+(L0

n /c2
0 )MC1

n , cm+(L1
n /c2

0 )MC0
n , cm=0; (48)

second order equations,

a(w2
n , v)− �Tr C2

n , v�− m[L0
n �w2

n , v�+L1
n �w1

n , v�]+L2
n �w0

n , v�−L0
nbL

0
n
(w0

n , v)]=0,

−M9C2
n , 9cm+(L0

n /c2
0 )MC2

n , cm+(L1
n /c2

0 )MC1
n , cm

+(L2
n /c2

0 )MC0
n , cm+ mL0

n �w0
n , Tr c�=0. (49)

The zero order equations show that three cases must be considered: L0
n is equal to the

square of an in vacuo resonance angular frequency of the plate; L0
n is equal to the square

of a resonance angular frequency of the rigidly closed cavity; L0
n is equal to the square of

a resonance angular frequency belonging to both spectra of the in vacuo plate and of the
rigidly closed cavity.

3.2.2. Perturbation of an in vacuo plate resonance
Assume that L0

n =vpl2
n , where vpl

n is a resonance angular frequency of the in vacuo plate,
which does not coincide with any resonance angular frequency of the rigidly closed cavity.
It is obvious that the zero order approximation of the corresponding plate displacement
w0

n is identical to Vn , the in vacuo plate mode. It is easily seen that the system mode
(wpl

n , Cpl
n , Lpl

n ) associated with this resonance frequency is approximated by

Lpl
n 2vpl2

n + h2L2
n , wpl

n 2Vn + h2 s
q$ n

anqVq , Cpl
n 2 h2C2

n , (50)

with the following definitions:

[D+vpl2
n /c2

0 ]C2
n =0 in V−, Tr 1zC

2
n − mvpl2

n Vn =0 on S,

L2
n =

mvpl2
n bvpl

n
(Vn , V*n )− �Tr C2

n , V*n �
m�Vn , V*n � , anq =

mvpl2
n bvpl

n
(Vn , V*n )− �Tr C2

n , V*n �
m(vpl2

n −vpl2
q )�Vq , V*q �

.
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The coefficient aqq being a solution of an equation of the form 0 aqq =0, it has been chosen
arbitrarily to equal zero: such a choice is quite possible because a resonance mode is
determined up to an arbitrary normalizing constant. Finally, it must be remarked that the
first order terms are identically equal to zero.

3.2.3. Perturbation of a resonance of the rigidly closed cavity
One assumes that L0

n =vc2
n , where vc

n is a resonance angular frequency of the rigidly
closed cavity (the corresponding mode satisfies a homogeneous Neumann condition on S),
which is different from any resonance frequency of the in vacuo plate. Obviously C0

n is
identical to the cavity resonance Fn . The corresponding resonance mode of the system
(wc

n , Cc
n , Lc

n ) is approximated by

Lc
n =vc2

n + h2L2
n , wc

n =w0
n + h2w2

n , Cc
n =Fn + s

q$ n

anqFq . (51)

In these expressions, the different parameters and functions are defined by

[D2 − mvc2
n ]w0

n =Tr Fn in S,

L2
n =−mvc2

n
�w0

n , Tr F*n �
MFn , F*n m , anq = c2

0v
c2
n

�w0
n , Tr F*q �

(vc2
q −vc2

n )MFq , F*q m,

[D2 − mvc2
n ]w2

n =Tr F2
n + m$L2

nw0
n −vc2

n gS

w0
n Gvc

n%+ s
q$ n

anq Tr Fq on S.

In this situation, the first order terms are again identically equal to zero. The correcting
term L2

n is real; the damping effect due to energy radiation into the domain V+ appears
in the next non-zero correcting term, the expression for which is easy to establish.

3.2.4. Perturbation of a plate/cavity resonance
The last possibility is that the in vacuo plate and the rigidly closed cavity have a common

resonance angular frequency vplc
N . Let Vn be the corresponding plate mode, and Fq the

corresponding cavity mode. The following results can be shown: two resonance frequencies
of the coupled system are associated with the common resonance frequency vplc

N ; the first
order correcting terms are not zero. The following expressions can be established:

LN 2vplc2

N 2 hL1
N , w2

N 2Vn + h s
s$ n

a2
nsVs , C+

N 2A2Fq , (52)

with

L1
N =vplc

N c0
�Vn , Tr F*q�

�Vn , V*n �1/2MFq , F*q m1/2,

A2 =[vplc2

N 2 hL1
N ]m

�Vn , V*n �
�Vn , Tr F*q �, a2

ns =
A2�Tr Fq , V*s �2 mL1

N�Vn , V*s �
m[vpl2

s −vplc2

N ]�Vn , V*n �
.

Due to the correcting term L1
n which is real, the common resonance frequency is split into

two resonance frequencies of the coupled system which are symmetrical with respect to
vplc2

N . The damping effect due to energy radiation at infinity in the zq 0 half-space appears
in the second order correction.
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Figure 10. Power density spectra of the response of the system cavity/baffled plate/external fluid to a turbulent
wall pressure described by the Corcos model. –.–.–., Acceleration at x=0·25 m; ——, pressure in the cavity at
x=0·1 m, y=0·4 m; -----, pressure out of the cavity at x=0·1 m, y=0·4 m.

3.3.  

In this section the response of a two-dimensional system cavity/baffled plate/external
fluid to a turbulent wall pressure is presented. The plate length is 1 m and its thickness
0·001 m. The cavity dimensions are 1×0·77 m2 (the interest in such a ratio is that the
double resonance modes appear at very high frequencies only). The Young’s modulus of
the plate material is 2·27×1011 Pa, its Poisson’s ratio is 0·28 and its mass per unit area
is 7·8 kg/m2 (steel characteristics). The sound speed in the fluid is 340 m/s and its density
is 1·29 kg/m3 (air characteristics). The plate is excited by the wall pressure due to a
turbulent flow which is described by the Corcos model [13]; the flow velocity is 10 m/s.

Our aim being to point out the role played by the resonance modes of the system, a
boundary element method is used to solve the exact equations. In Figure 10, it appears
that the power density spectra of the plate acceleration and of the external pressure have
the same set of sharp peaks which correspond to structure resonances; the power spectrum
of the internal acoustic pressure has this set of sharp peaks and, in addition, some soft
maxima which correspond to cavity resonances. In Figure 11, the acceleration spectrum

Figure 11. As Figure 10 but –.–.–., acceleration at x=0 m; ——, pressure in the cavity at x=0·1 m, y=0·1 m;
- - - -, pressure out of cavity x=0·1 m, y=0·1 m.
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has one peak every two pressure peaks, only: the missing resonances are odd modes which
have a node at the observation point. The pressure spectra are quite similar to the former
ones.

These results show what the theoretical analysis has proved: the system response is
governed by its resonance modes. These modes can be classified into two categories:
structure-born modes which are close to the in vacuo structure modes, and cavity modes
which are close to the rigidly closed cavity modes. As a consequence, in this case, a
perturbation method will be efficient.

Some papers, which deal with similar problems must be mentioned. One of the oldest
significant contributions is due to Davies [18]: the author expanded the displacement of
a fluid-loaded baffled plate in terms of its in vacuo modes and gave an approximation of
the series coefficients. A similar approach is followed in references [19, 20]. In two other
papers published in 1988 [21, 22], use was made of the fluid-loaded plate Green function
to describe its response to a turbulent wall pressure and, then, approximations were given.
This last approach is more similar to ours, but the author does not give formulas as explicit
as those presented here.

Finally, two recent papers must be mentioned [23, 24]. They deal with the sound
induced through an infinite plate excited by the noise generated by a turbulent flow. This
is a phenomenon which is slightly different from that studied in this section. Indeed,
the plate excitation is not the turbulent wall pressure but the acoustic pressure generated
by the vortices, which are moving acoustic sources. In addition, the wave equation
written within the moving fluid accounts for this motion. Thus, a resonance peak occurs
when the convection velocity is close to the phase speed of the in vacuo flexural waves
in the plate. Such a phenomenon cannot be described by the equations which are
adopted here.

4. EFFICIENCY OF AN ELASTIC SCREEN IN A ROOM

In this section, a perturbation method is applied to a problem of room acoustics.
Diffracting thin structures are commonly used in rooms: as reflectors to tune the acoustic
performances of a concert hall, and as screens in factory halls to protect workers from
machine noise. Most of the computing programmes devoted to room acoustics model these
structures as perfectly rigid systems. In practice, they are acoustically excited and, as a
consequence, their actual efficiency can differ significantly from the predicted one
(this is common for concert halls equipped with a tunable ceiling made of disjoint light
panels).

The first aim of this study is to quantify the influence of the vibrations of a screen on
its efficiency compared to the efficiency of a perfectly rigid screen. A second aim is to
propose a simple numerical method. In the first section the problem is reduced to a
boundary integral equation along the screen surface for the two cases, rigid screen and
elastic structure. Then a perturbation method is proposed to establish an approximate
solution. Finally, the perturbation approximation is compared to the numerical solution
of the exact equation. Two examples of dimension two are looked at: a simplified concert
hall model in which the structure is parallel to the ceiling and acts as a reflector, and a
simplified model of a factory hall in which the structure is orthogonal to the floor and acts
as a protecting screen.

The mechanical properties of the structure are varied over a rather wide range. Three
situations are pointed out, depending on the rigidity and on the density of the screen
material: the vibrations can be neglected; their influence can be predicted by a perturbation
method; or the exact equations must be solved.



     361

4.1.       

The room is modelled by a rectangular domain V in which a thin screen occupies a
segment S. The system is excited by a point harmonic (e−ivt) source located at S. The fluid
is characterized by a sound speed c and a density rf .

For simplicity, the boundary 1V of V is characterized by four reflection coefficients (one
for each side of the rectangular domain) and the corresponding Green function is
approximated by an image method. This simplification has been adopted because most of
the computer programmes for room acoustics are based on an image method or a ray
method (which is equivalent to the image method when polyhedral boundaries are
considered).

4.1.1. Perfectly rigid screen
The acoustic pressure field p(M) is the solution of the following boundary value

problem:

(D+ k2)p(M)= dS (M) in V,
1p
1n

(M)=0 on S. (53a)

Here k is the wavenumber v/c and n is the unit vector normal to S. Each line segment
Bj composing the boundary of the domain V is characterized by a reflection coefficient:

bj ( j=1, . . . , 4)= reflection coefficient of Bj , with Q
4

j=1
Bj = 1V. (53b)

Let G(S, M) be the Green function of the Helmholtz equation in V satisfying the
boundary conditions on 1V defined by the reflection coefficients bj . It has the form

G(S, M)=−
i
4

H(1)
0 (kr(S, M))−

i
4

s
ne 0

AnH(1)
0 (kr(Sn , M)),

where Sn , n=1, . . . is the nth image of the point source S and An is its amplitude which
depends on the reflection coefficients; H(1)

0 (z) is the Hankel function of the first kind of
order 0; and r(M, M') is the distance between the points M and M'.

Let pin (M) be the sound pressure field in the absence of the screen. Then the total
pressure can be expressed as [25, 26]

p(M)= pin (M)+gS

m(P)
1G(M, P)

1n(P)
ds(P). (54)

The unknown function m represents the step of the pressure across the screen.
The boundary value problem is thus replaced by a boundary integral equation:

1pin

1n
(P)− lim

P0:P

1

1n(P0) gS

m(P')
1G(P', P0)

1n(P')
ds(P')=0 on S. (55)

Here P0 is a point outside S with limit P on the screen. It must be recalled that the limit
of the normal derivative of a double layer potential is a finite part of the integral: any
numerical approximation must be defined carefully (see references [25] and [27], for
example). The Green function is computed by using the method described in reference [28].

This integral equation has been solved by a classical collocation method. S is divided
into N sub-domains Si ; to ensure a good accuracy of the numerical solution, the length
of each subdomain does not exceed one-sixth of the wavelength in the fluid. The function
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m is approximated by a piecewise constant function, its value on Si being denoted by mi ,
i=1, . . . , N. The approximate form of equation (55) is then written at N collocation
points Pi $Si . One is left with a system of N linear algebraic equations to determine theN
unknown constants mi . The sound pressure field is approximated by introducing the
approximation of the layer density m into the representation (54).

4.1.2. Elastic screen
The screen is now modelled as a thin elastic plate. A new unknown function is involved,

the transverse displacement u. The sound pressure field p and the plate displacement u are
the solutions of a system of partial differential equations. Let the mechanical parameters
defining the plate material be its Young’s modulus E, its Poisson’s ratio n and its density
rp . The plate thickness is h and it occupies the segment ]L−, L+[; the abscissae of a point
on the plate are denoted by s which varies from l− to l+. A condition of free boundaries
is assumed. Equation (53a) is replaced by the following system:

(D+ k2)p(M)= f(M), M$V, (56a)

0 d4

ds'4
− l41u(M')= m(M')/D, M'$S, (56b)

1p
1n

(M')=v2rfu(M'), M'$S, (56c)

u0(M')=0= u1(M') for M'=L− or M'=L+. (56d)

In these equations, l4 is defined by l4 = rphv2/D, with D=Eh3/12(1− n2) denoting the
plate rigidity. The term m=(p− − p+) represents the difference between the values of the
pressure p on the two sides of the screen. The properties of the room boundaries as
expressed by equation (53) remain unchanged.

Let G(M, M') be the Green function of the plate operator in the infinite domain
satisfying

0 d4

ds'4
− l41G(M', M0)= 1

D
dM0(M'), −aE s'E+a,

and a suitable condition at infinity (no incoming waves). One has

G(M', M0)= (eil=s0− s'= −e−il=s0− s'=)/4l3D

The Green representation of the plate displacement involves the pressure step m and a
boundary sources vector Su :

u(M')=−gS

m(M0)G(M', M0) ds0+Su · G(M') on S,

u(L+) DG1(P, L+)

u(L−) DG1(P, L−)
G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

Su = u'(L+)
, G=

DG0(P, L+)
.

(57)

u'(L−) DG0(P, L−)
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The choice of the boundary sources is a consequence of the free boundary conditions [4].
The pressure field is again given by equation (54). The continuity condition (56c) leads to
the integral equation

1pin

1n� (P)− lim
P0:P

1

1n gS

m(P')
1G(P0, P')

1n(P')
ds'

=v2rf6−gS

m(P')G(P, P') ds'+Su · G(P)7 on S. (58)

Four additional equations are obtained by applying the boundary conditions (56d) to
expression (57).

To get an approximation of the solution (m, Su ), a collocation method is used. The plate
domain is divided into N subdomains Si , the length of which is less than one-sixth of both
the plate wavelength 2p/l and the fluid wavelength 2p/k; the function m is approximated
by a piecewise constant function. This approximation is introduced into equation (54) to
get the corresponding approximation of the sound pressure field.

4.1.3. Comparison between the diffraction effects of the rigid screen and of the elastic screen
The importance of the vibrations of the screen effect appears in equation (58). Indeed,

by comparing the two integrals which appear in this expression, it is obvious that the
vibrations’ effect can be neglected as soon as the operator m:v2rf f Gm is small compared
to the operator m:1n f m1nG: that is, if v2rf is small enough. A refined criterion can be
obtained in the particular case of a plane wave impinging on an elastic plate [29]. In the
next section, it is shown that the ratio rf /rph is the coupling parameter which ‘‘measures’’
the influence of the vibrations on the screening effect.

In Figure 12, two configurations of a screen in a room are presented: the first one, in
which the screen is above the line source/observation point, corresponds to an idealized
two-dimensional concert hall; the second configuration, in which the screen is located
between the source and the receiver, is a schematic industrial situation of a protecting
screen. A first set of computations have been conducted for the second geometrical
configuration of the room (Figure 12 (b)). The screen is either rigid or made of one of the

Figure 12. Room geometrical configuration.
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T 1

Mechanical data of the screen

rp E h fc lc m0/m m̃0/m
Material (kg/m3) n (Pa) (mm) (Hz) (m) (m−1) (l−1

c )

AC 7800 0·28 2·26×1011 5 2273 0·149 0·033 0·49×10−2

AG 650 0·30 4·60×109 5 4600 0·074 0·397 2·93×10−2

B 1500 0·28 2·26×1011 5 991 0·343 0·172 5·90×10−2

three types of materials defined in Table 1. The room dimensions are 25×9 m2. The
reflection coefficients are 0·8 for the z=0 wall, and 0·7 for the others. The screen length
is 3 m; it is normal to the z=0 wall, and extends from L− =(12·5, 0) to L+ =(12·5, 3).
The source is isotropic and located at S=(11·5, 0·5).

The wavelength of the harmonic signal emitted is 6·80 m, the corresponding driving
frequency being 50 Hz. The observation line is defined by 13 mE yE 22 m, z=1 m.
Figure 13 shows the excess attenuation: that is, the difference between the sound levels with
the screen and without it.

Material AC has the characteristics of steel: large values for both the Young’s modulus
and the density. Material AG is the lightest, its characteristics are close to those of
compressed wood [30]. Material B is in between the Young’s modulus of steel and a density
5·2 times less. Far from the screen (ye 19 m), the four curves are very similar. Close to
the screen, the differences reach more than 10 dB. The highest attenuation, which is
obtained for the steel screen, is of the same order as that given by the perfectly rigid screen.
The lowest excess attenuation occurs for the lighest material (material AG). In the last
section, other examples are presented.

4.2.          

For an elastic screen, a perturbation method can be adopted as soon as the fluid density
is small compared to the surface mass of the structure. Suppose one introduces the

Figure 13. Excess attenuation as a function of the co-ordinate y of the receiver for the second situation (vertical
screen); wavelength=6·80 m, reflection coefficients b; = (0·8, 0·7, 0·7, 0·7). ——, Material AC; −.–.–.–, material
B; ..–..–, material AG; ----, rigid screen.
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parameter o= rf /rph which is assumed to be small enough so that the solution (m, Su ) of
the boundary integral equations system can be approximated by the first two terms of its
Taylor series:

m= m0 + om1 +O(o2) and Su =S0
u + oS1

u +O(o2),

where O(o2) means that the error becomes zero as fast as o2. By using the change of
unknown function v=v2rphu, the following expansion is introduced:

v= v0 + ov1 +O(o2).

Equations (57) and (58) become

1pin

1n
(M)−gS

m(P)K(M, P) ds(P)= ov(M) on S,

v(M)=−gS

m(P)g(M, P) ds(P)+Sv · Gg (M) on S, (59)

where g(M, P)= rphv2G(M, P), K(M, P)= 1/1n(M)1/1n(P)G(M, P) and

v(L+) −Dg1(M, L+)

v(L−) Dg1(M, L−)
G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

Sv · Gg (M)=
v'(L+)

·
Dg0(M, L+)

.

v'(L−) Dg0(M, L−)

The truncated expansions of m and Sv are introduced into equations (59). The zero order
terms lead to the following system of equations:

gS

m0(P)K(M, P) ds(P)=
1pin

1n
(M) on S, (60a)

Figure 14. Excess attenuation as a function of the coordinate y of the receiver; vertical screen, material AC,
wavelength 6·80 m, reflection coefficients bj =(0·8, 0·7, 0·7, 0·7). ——, Exact curve; .–.–.–, zero order
approximation; ---, first order approximation.
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Figure 15. As Figure 14 but for material B.

Figure 16. As Figure 14 but for material AG.

Figure 17. As Figure 14 but for material AC and wavelength 1.36 m.
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Figure 18. As Figure 15 but wavelength 1·36 m.

v0(M)=−gS

m0(P)g(M, P) ds(P)+S0
v · Gg (M) on S. (60b)

The first order term of the first equation (59) leads to

−gS

m1(P)K(M, P) ds(P)= v0(M) on S. (61)

Equation (60a) corresponds to the perfectly rigid screen. It is solved by a collocation
method. Its solution m0 is then introduced into expression (60b) and the boundary
conditions along the screen boundary provide four algebraic equations to determine the
source vector S0

v . Finally, the zero order approximation of the screen displacement
(representation (60b)) is introduced into equation (61).

Figure 19. As Figure 14 but wavelength 3·40 m and horizontal screen.
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Figure 20. As Figure 16 but wavelength 3·40 m and horizontal screen.

By solving equation (61), the first order correcting term m1 of the double layer acoustic
source m is obtained: here again, this equation is that of the perfectly rigid screen. The
sound pressure is thus approximated by

p(M)2 (p0 + op1)(M)= pin (M)−gS

(m0 + om1)(P)
1G(M, P)

1n(P)
ds(P). (62)

This expression accounts partly for the screen vibrations and is a good approximation of
the exact solution in so far as the parameter o is small enough. In the following examples,
the meaning of ‘‘small enough’’ will appear clearer.

Figure 21. As Figure 15 but wavelength 3·40 m and horizontal screen.
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Figure 22. Excess attenuation as a function of the frequency; vertical screen; material B; receiver at (16·0 m,
1·0 m); reflection coefficients bj =(0·8, 0·7, 0·7, 0·7)——, Exact curve; .–.–, zero order approximation; -----, first
order approximation.

4.3.         

     

Here the geometries defined in section 4.1.2 and the screen characteristics given in Table
1 are considered. It has been seen in section 4.1.3 that the elasticity of the screen is
important mainly at low frequencies and for low screen density; in other circumstances,
the screen is correctly described as a perfectly rigid infinitely thin diffracting object.

The dimensions of the room are (0·0 mE yE 25·0 m; 0·0 mE zE 9·0 m). For the
configuration of Figure 12(a), the screen, which is in a ‘‘horizontal’’ position, extends from
L− =(2·5 m, 5·0 m) to L+ =(10·0 m, 5·0 m). A point isotropic source is located at
S=(1·25 m, 2·0 m) and the sound field is calculated along the line (13·0 mE yE 23·0 m,
z=1·0 m).

Figure 23. As Figure 22 but receiver at (19·0 m, 1·0 m).
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Figure 24. As Figure 22 but receiver at (13·0 m, 1·0 m), and reflection coefficients bj =(0·0, 0·9, 0·9, 0·9).

For the configuration of Figure 12(b), the screen, which is in a ‘‘vertical’’ position,
extends from L− =(12·5 m, 0·0 m) to L+ =(12·5 m, 3 m). A point isotropic source is
located at S=(11·5 m, 0·5 m) and the sound field is calculated along the line
(13·0 mE yE 23·0 m, z=1·0 m).

The results present the excess attentuation obtained in the presence of the screen: that
is the difference between the sound pressure levels with and without the screen. Two sets
of curves have been calculated: in the first set, the driving frequency is fixed and the
observation point position is varied, while in the second set the observation point is fixed
and the frequency is varied.

Figures 14–25 present the excess attenuation as a function of the receiver position for
a fixed frequency. For Figures 14–16, the screen is perpendicular to the y-axis (vertical
position), the frequency is 50 Hz (wavelength=6·80 m) and the reflection coefficients are
bj =(0·8, 0·7, 0·7, 0·7). They provide a good test of the efficiency of the perturbation

Figure 25. As Figure 24 but receiver at (16·0 m, 1·0 m).
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method. For material AC (o=0·033), the difference between the zero order approximation
(perfectly rigid screen) of the excess attentuation and the exact one (vibrating plate) is
small, and the first order approximation gives an almost perfect result. For materials B
(o=0·17) and AG (o=0·40), the difference between the zero order approximation and the
exact curve is much larger: nevertheless, the correction given by the first order
approximation is still good enough.

Figures 17 and 18 correspond to a higher frequency (250 Hz, wavelength=1·36 m) and
lower reflection coefficients bj =(0·8, 0·3, 0·3, 0·3). With these data, the difference between
the excess attenuation due to the perfectly rigid screen and that due to the steel one
(material AC) is no more significant. For material B, the difference between the perfectly
rigid screen remains important and the first order approximation provides the necessary
correction.

Figures 19–21 were obtained for a horizontal screen, with a driving frequency equal to
100 Hz (wavelength=3·40 m) and the following set of reflection coefficients bj =(0·8,
0·3, 0·3, 0·3). For material AC, the difference between the excess attenuation due to the
perfectly rigid screen and that provided by the elastic plate is not significant. This result
is quite reasonable: indeed, in this situation, the source and the receiver are both on the
same side of the diffracting obstable and both far away from it, thus reducing its influence.
For material AG, the difference remains important due to the fact that a light screen is
more easily excited by the incident acoustic wave. The first order approximation provides
a correction which is not really bad, but is not sufficient due to the fact that the parameter
e is too large.

In Figures 22–25 the excess attenuation is presented as a function of the frequency over
a range 20–300 Hz for a given position of the receiver; the configuration of a vertical screen
has been adopted and the screen is made of material B. As has been mentioned in section
4.1.3, the difference between the rigid screen and the elastic one must decrease as the
frequency is increased. This general tendency is confirmed by all the results presented here.
The first two sets of curves (Figures 22 and 23) correspond to reflection coefficients
bj =(0·8, 0·7, 0·7, 0·7) and two receiver positions M=(16·0 m, 1·0 m) and M=(19·0 m,
1·0 m). The other two (Figures 24 and 25) are for the reflection coefficients
bj =(0, 0·9, 0·9, 0·9) and the receiver positions M=(13·0 m, 1·0 m) and M=(16·0 m,
1·0 m). In both cases, the first order approximation gives a prediction of the excess
attenuation with an accuracy which is not dependent on the boundary conditions on the
room walls.

For all the configurations studied it appears that the perturbation method is a powerful
tool: its accuracy is quite sufficient when the parameter e is less than 0·2; furthermore, the
computation time is about three times less than that required by solving the coupled system
of boundary integral equations.

5. CONCLUSION

Several canonical problems of vibro-acoustics have been presented in which a thin elastic
structure is coupled to a gas. Because of the low density of the fluid, the fluid/structure
coupling is weak and a perturbation method can be used: the small parameter which is
involved is the ratio of the gas density to the structure surface mass.

Three examples have been developed which show the efficiency of such methods, and
two different approaches have been considered.

In the first one, the structure displacement is expanded into a series of the fluid-loaded
modes of the structure, instead of in the in vacuo modes which are more classically used;
then, a small parameter method is developed to get an approximation to these fluid-loaded
modes in terms of the in vacuo ones. As a consequence, the structure displacement is
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expressed as a series of the in vacuo modes. The same final series can be obtained directly
by looking at the structure displacement as a series of the resonance modes of the ‘‘dry’’
elastic solid: one is left with an infinite system of algebraic equations; solving it by a
perturbation method leads to the results that have been given here. But, the resonance
frequencies of the fluid-loaded structure cannot be identified as easily and the expression
for the perturbed resonance régimes are not obtained.

In the second approach, a global representation of the system response by boundary
integrals is adopted. The boundary integral equations thus derived are solved by a
perturbation technique applied to a classical boundary element method.

This type of perturbation algorithms, which has been developed here for two particular
classical methods, apply for any other numerical approximation. Two basic computation
programmes are required: one which solves the vibration problem of the in vacuo structure;
and another one which solves the diffraction problem by a perfectly rigid body (Neumann
boundary condition). The perturbation method consists of an iterative procedure in which
a structure problem and a diffraction problem are alternatively solved at each step.

The examples which have been presented show clearly that the accuracy of the result is
independent of the basic method—modal expansion or global representation—which is
adopted. Nevertheless, depending on the results which are desired, a particular
representation of the solution can be chosen. A perturbation calculation based on a
boundary element method is very suitable when the objective is to establish a sound pressure
level chart for a given set of isolated frequencies. Conversely, if a broad frequency bandwidth
excitation (transient signal, randomly time-dependent sources, . . . ) is involved, a resonance
modes expansion representation of the solution seems to be the most convenient. To
compute the resonance frequencies and the resonance modes, any numerical method which
solves the in vacuo structure problem and the diffraction problem can be used: in particular,
a perturbation algorithm based on a boundary element method is efficient.

As a final remark, let us recall that the method which has been presented for the
particular example of a thin plate applies to any kind of structure immersed in a light fluid.
For example, in reference [31], the authors applied this technique to a more complex
structure: a bounded cylindrical thin shell, extended by two semi-infinite perfectly rigid
cylinders, embedded in air and excited by an internal turbulent air flow (an additional
difficulty appears due to the cut-off frequencies of the cylindrical wave guide). In general,
the fluid-loaded structure can have resonance modes which do not radiate acoustic energy:
they are the structure modes which correspond to purely tangential displacement of the
surface of the elastic solid in contact with the fluid. Though such modes belong to the set
of resonance modes of the coupled system, they must be skipped from the representation
of the solution of the fluid/structure interaction problem. But the consequence is that the
uniqueness of the solution of the coupled equations is not ensured in the general case, and
this implies numerical instabilities which require some care.
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